
Should the Olympic sprint skaters run the 500 meter twice?
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Abstract. The Olympic 500 meter sprint competition is the ‘Formula One
event’ of speed skating, and is watched by millions of television viewers. A draw
decides who should start in inner lane and who in outer lane. Many skaters dread
the last inner lane, where they need to tackle heavier centrifugal forces than their
companions in the last outer lane, at maximum speed around 55 km/hour, at
a time when fatigue may set in. The aim of this article is to investigate this
potential difference between last inner and last outer lane. For this purpose data
from eleven Sprint World Championships 1984–1994 are exploited. A bivariate
mixed effects model is used that in addition to the inner-outer lane information
takes account of different ice and weather conditions on different days, unequal
levels for different skaters, and the passing times for the first 100 meter. The
underlying ‘unfairness parameter’, estimated with optimal precision, is about
0.05 seconds, and is indeed significantly different from zero; it is about three
times as large as its estimated standard deviation.

Results from the work reported on here played a decisive role in leading the
International Skating Union and the International Olympic Committee to change
the rules for the 500 meter sprint event; as of the Nagano 1998 Olympic Games,
the sprinters are to skate twice, with one start in inner lane and one in outer lane.
The best average result determines the final list, and the best skaters from the
first run are paired to skate last in the second run. It has also been decided that
the same rules shall apply for the single distance 500 meter World Championships;
these are arranged yearly from 1996 onwards.

Key words and phrases: combining data sources, Dan Jansen, mixed effects
model, Olympic Games, speed skating, Sprint World Championships, unfairness
parameter

1. Background: Is the Olympic 500 meter unfair?

“He drew lane with anxious attentiveness — and could not conceal his disappointment:

First outer lane! He threw his blue cap on the ice with a resigned movement, but quickly

contained himself and picked it up again. With a start in inner lane he could have set a

world record, perhaps be the first man in the world under 40 seconds. Now the record was

hanging by a thin thread — possibly the gold medal too. At any rate he couldn’t tolerate

any further mishaps.”

This book excerpt (from Bjørnsen, 1963, Ch. 9) illustrates what has been known for a

long time, that even the most accomplished sprint skaters experience difficulties with the

last inner lane. (Yevgeni Grishin indeed had his famous technical accident there and found

himself stumbling into outer lane, caused by the leather on his left boot touching the ice

as he had to lean over at the high speed; he miraculously went on to win the 1960 Squaw

Valley Olympic gold medal at 40.2 seconds. Some days later he achieved 39.6, this time

with last outer lane.) The last inner lane skaters have to fight a higher acceleration force,
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since the inner track radius is about 25–26 meter and the outer track about 29–30 meter,

at a time when speed is at peak and fatigue may set in; see Figure 1. The acceleration

force formula is mv2/r, where m is mass, v is velocity, and r is radius. Thus a 90 kg skater

with top speed 400 meter by 27 seconds meets a force of about 80 kp in inner lane and

about 70 kp in outer lane. As a consequence many skaters are not able to keep to the

designated curve, glide out towards or even into the outer lane, and in such cases have

to skate some extra distance. This phenomenon is particularly prominent on rinks where

the ice is fast and the curvature radius minimal, as for the modern indoor rinks. The last

inner lane skaters are also more prone to experiencing technical accidents.

 

 

start 100m, finish

Figure 1. The speed skating rink. The skaters exchange lanes on the back-
straight. One lap, comprising one outer and one inner lane, is exactly 400 meter
long.

1.1. The present investigation. This problem has been recognised and solved in a

satisfactory manner since 1975 when it comes to the annual Sprint World Championships

events, in that an International Skating Union rule was enforced to make skaters have

last inner and last outer lanes on alternate days. But the Olympic event has a potential

unfairness built into it since the skaters run only once, and half of them are allotted last

inner lane and the other half last outer lane, by chance.

My aim has been to estimate the potential ‘unfairness’ difference parameter in ques-

tion as precisely as possible, and to test whether the unfairness is or is not statistically

significant. The data I have used consist of the complete 500 meter lists from the eleven

Sprint World Championships for Men Trondheim 1984–Calgary 1994. Each skater has a

100 meter passing time and a 500 meter result for the Saturday event, and similarly for the

Sunday event, and skaters start in inner and outer tracks on alternative days. (The SWCs

also include 1000 meter races on both Saturday and Sunday, and all four runs contribute

to the final standing; our present concern lies however with the 500 meter only.)
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Agree to define d as the average difference between a result reached by last inner track

versus last outer track, for the average top sprinter:

d = average difference (last inner track – last outer track). (1.1)

This is the statistical parameter we wish to estimate with optimal precision. It is easy

to put up some simple estimates based on individual differences, for example, but such

estimates will typically lack in statistical precision. I have used a more sophisticated

statistical approach, involving a model with ingredients

500 mday 1 = a1 + b1 · 100 mday 1 + cskater ± 1
2
d + variationday 1,

500 mday 2 = a2 + b2 · 100 mday 2 + cskater ± 1
2
d + variationday 2.

(1.2)

The ± here is a plus if the skater has last inner track and a minus if the skater has last

outer track. The model and methods used take account of the 100 meter passing times, the

individual skater’s ability, possible differences in day-to-day conditions, and the inner-outer

information.

The model is more formally motivated and described in Section 2, and estimation

methods along with analysis of their precision are developed in Section 3. I find it reason-

able to interpret d in a somewhat conservative manner, and do not want it to be overly

influenced by various extreme or too unusual results; it is meant to be the average differ-

ence for ‘usual runs’ where the skaters are up to their normal best. It is therefore necessary

to decide on criteria to define outliers, run times that are subsequently to be removed from

the final analysis. Three outlier tests are given in Section 4, which also contains material

and analysis that support the fundamental statistical model used.

d̂ st. error

1994 Calgary: 0.010 0.043
1993 Ikaho: 0.032 0.041
1992 Oslo: −0.019 0.086
1991 Inzell: 0.023 0.040
1990 Tromsø: 0.096 0.087
1989 Heerenveen: 0.128 0.047
1988 West Allis: −0.147 0.090
1987 Sainte Foy: −0.151 0.080
1986 Karuizawa: 0.035 0.066
1985 Heerenveen: 0.090 0.058
1984 Trondheim: 0.131 0.038

grand average: 0.048 0.016

Table 1. Estimates of the difference parameter d for eleven Sprint World Cham-
pionships for men, along with standard errors (estimated standard deviation) for
these.

1.2. Conclusions. In view of the potentially serious implications (as measured on

the Olympic scale) of the results and their interpretations I decided to gather enough data

to reach a standard deviation of the final d estimate of about 0.02 seconds. Preliminary

analysis based on a couple of SWCs indicated that this meant including about ten complete
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SWC data sets. Section 5 reports more fully on analysis of the eleven SWCs 1984–1994;

presently we exhibit an estimate of the d parameter for each, together with their standard

errors (estimated standard deviations) and their grand (weighted) average.

The d estimates are seen to vary somewhat from competition to competition, as was

expected in view of the sometimes quite different conditions regarding wind, temperature,

gliding conditions, and the actual sizes of the inner and outer lane radii. In situations

where there is a strong wind against the skater on the backstraight, ‘the crossing stretch’,

as arguably was the case for many competitors in Sainte Foy 1987, West Allis 1988 and

Oslo 1992, for example, it may actually be fortuitous to have the last inner course. The d

estimates are indeed found to be negative, and the corresponding standard errors highest,

for exactly these three events. The ds for other events have values in the range 0.09–0.13

(Trondheim 1984, Heerenveen outdoor 1985, Heerenveen indoor 1989, Tromsø 1990), and

in the more modest range 0.01–0.04 (Karuizawa 1986, Inzell 1991, Ikaho 1993 and Calgary

1994). It is a visible feature of the data that the more statistically secure d estimates

are those that are high, and typically reflect good and stable conditions with runners

attaining their normal high standards. As a case in point, if one excludes 1987 Sainte Foy,

1988 West Allis, 1990 Tromsø and 1992 Oslo, which are the four events with standard

errors for d estimates exceeding 0.08, then the grand average estimate for the remaining

seven SWCs is 0.065, which is nearly four times its standard error 0.017 (95% confidence

interval [0.032, 0.098]). The grand (weighted) average estimate for all eleven SWCs is

0.048 seconds, which is about three times its standard error 0.016, and hence statistically

significant (p-value 0.001; 95% confidence interval [0.174, 0.079]). Further details, along

with supplementary analysis and graphical evidence supporting the d > 0 conclusion, are

given in Section 5.

Folklore knowledge in the stands has it that women are not as bothered with the last

inner lane as men sometimes are; they are seen to keep much better to the designated curve,

and also seem to have fewer slips and technical accidents than men. This is supported by

data; see the discussion of Section 6. Thus the unfairness argument is much weaker in case

of the women’s event.

How important is the 0.05 seconds difference? At top speed 26 seconds for 400 meters

a skater manages an impressive 15.4 meter in 1 second, and about 0.75 meter in 0.05

seconds, which translates into roughly 0.15 percent. It would mean about 15 meters in a

10 000 m run, and about 65 meters in a marathon. So the difference matters! This is also

borne out through comparison with real and simulated result lists for the 1994, 1992, 1988

Olympics, given in Appendix I. As alluded to above there are also reasons to believe that

the real d number is larger for the modern indoor rinks that will host the future Olympic

speed skating events, than the grand average value 0.05 arrived at here.

1.3. A proposal to the ISU and the IOC. A natural proposal to the International

Skating Union and the International Olympic Committee, in view of these findings, is that

the skaters should run the 500 meter twice, with one start in inner and one in outer lane,

as in the Sprint World Championships. The most natural solution would then be as in

alpine events and ski jumping, with a ‘reversed starting list’, with the best skaters from
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the first run starting the latest in the second run, subject to correct pairing with respect

to inner and outer lane, and with the best average result defining the final ranking. This

is a spectator-friendly regime too; large screens would at every stage inform viewers of the

current ranking as well as the performances required by the next skaters to reach the top

of the list. The average viewers would then easier understand when to be appropriately

excited.

1.4. Coda: They said yes. Such a proposal was put forward to the ISU at

their June 1992 congress in Davos, along with a brief summary of the work presented

here (based on SWCs 1984–1992), through the Norwegian delegation. Also included as

handout material to sell the argument were real and simulated 500 meter result lists from

the two last Olympic events, where the simulated list in question was the the speculated

outcome if the inner lane starters had started in outer lane and vice versa, and computed

under the d = 0.06 assumption (which was the estimate based on 1984–1992 data; see

Appendix I below for such lists for the 1988, 1992, 1994 events, using the d = 0.05 figure).

It is fair to add that the attraction argument, that the proposed scenario would actually

be (even) more spellbinding for spectators, was emphasised as much as the statistical

questions related to the unfairness parameter. The meeting decided not to interfere with

the already laid plans for the 1994 Lillehammer Olympics, and to reconsider the matter

at their next congress in June 1994 in Boston. And at this meeting the representatives

of the 34 attending countries (ISU members) after some debate unanimously voted yes to

the new proposal, which was this time put forward by the ISU Technical Committee for

Speed Skating, to be made effective from the 1998 Nagano Olympics onwards, for both

men and women. The new 500 meter rule is also to be made effective for the annual World

Championships for single distances, which are introduced as from 1996.

2. Sprint World Championships data and the statistical model

This section describes the data and motivates the statistical model which is used. A simpler

model for the differences of finishing times is also considered.

2.1. The bivariate mixed effects model. For illustration, consider data∗ from

the SWC 1994, held in the Olympic Oval, Calgary, Canada. These are of the form given

in Table 2; a full listing of the 1984–1994 results is offered in Appendix II.

We represent the inner-outer information as

z1,i =

{
−1 if no. i starts in inner track on day 1,

1 if he starts in outer track on day 1,

with a similar z2,i for day 2. Note that z2,i is always −z1,i, by the ISU rules for these

Championships. Let furthermore x1,i and Y1,i be 100 meter time and finishing 500 meter

∗ Data source: skøytenytt (‘Speed Skating News’), 5/6/1984, 6/1985, 6/1986, 6/1987, 7 and 8/1988,

6/1989, 5/1990, 7/1991, 7/1992, 5/1993, 3 and 6/1994. This is an international bulletin issued by the
World Speed Skating Statisticians’ Association about ten times a year, and with contributing associate

editors from about 20 countries. Chief editor is Magne Teigen, Veggli, Norway.
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time for skater i on day 1, and similarly x2,i and Y2,i are 100 meter time and finishing 500

meter result for the same skater on day 2.

first day: second day:
100 500 100 500

1. D. Jansen o 9.82 35.96 i 9.75 35.76
2. S. Klevchena o 9.78 36.39 i 9.82 36.27
3. J. Inoue i 9.98 36.43 o 9.76 36.05
4. H. Shimizu o 9.70 36.35 i 9.77 36.08
5. K. Scott i 9.96 36.87 o 9.87 36.55
6. I. Zhelezovsky i 10.08 36.90 o 10.22 36.99
7. T. Kuroiwa i 10.11 36.83 o 10.07 36.75
8. Y.-M. Kim o 9.81 36.56 i 9.76 36.53

... and so on ...

Table 2. Results for the best of the 33 skaters taking part in the Sprint World
Championship in Calgary, Candada, January 29–30 1994. Here ‘i’ and ‘o’ signify
that the skater started in respectively outer and inner lane.

A natural starting point for the model building procedure is the representation

Y1,i = a1 + b1x1,i + ci + 1
2
dz1,i + e1,i,

Y2,i = a2 + b2x2,i + ci + 1
2
dz2,i + e2,i

(2.1)

for i = 1, . . . , n, where d is the quantity of primary interest, see (1.1); a skater needs the

extra amount 1
2
d if he starts in outer lane compared to the extra amount − 1

2
d if he starts

in inner lane. Further, ei,1 and ei,2 represent random statistical variation for the two

runs, modelled as 2n independent terms distributed as N{0, σ2}, while ci represents that

particular skater’s ability compared to the average level in the competition. Thus (2.1) is

the formal version of the model that was hinted at in (1.2). Top skaters Dan Jansen and

Igor Zhelezovsky have negative cis, perhaps around −1, while those found in the second

half or so on the final results list have positive cis, perhaps around 1 for the slower ones.

The cis are not directly observable; they would be poorly estimated based on data from

one competition, and although more accurate values for these could be assigned based on

extensive data from several competitions, the intention presently is to treat them in the

‘random effects’ way. Assuming c1, . . . , cn to come from a normal {0, κ2}, the model takes

the form (
Y1,i

Y2,i

)
∼ N2{

(
a1 + b1x1,i + dwi

a2 + b2x2,i − dwi

)
,

(
σ2 + κ2 κ2

κ2 σ2 + κ2

)
}. (2.2)

Here, for convenience,

wi = 1
2
z1,i = − 1

2
z2,i =

{
1/2 if outer start on day 1 and inner start on day 2,

−1/2 if inner start on day 1 and outer start on day 2.
(2.3)

The ‘intraclass correlation’ ρ = κ2/(σ2 + κ2) parameter is here representing the stability

for the average skater.

The Saturday parameters (a1, b1) and Sunday parameters (a2, b2) are a priori different

since gliding and other conditions, like wind and temperature, are often different for the
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two days. There is an argument favouring b1 = b2, though, which means that the day-

to-day difference in overall conditions can be well explained by the difference a2 − a1

alone. Suppose for example that the conditions are a bit worse on Sunday. This leads to

somewhat larger x2 values than x1 values, and somewhat larger Y2 values than Y1 values,

by about the same factor; the two slopes in question would be approximately the same. In

the analysis I therefore put b1 = b2 in (2.2). Data support this assumption, see Section 4.

This reduction from five to four mean parameters is not overly important; results based

using all five parameters give very nearly the same results. I have similarly tested whether

it is necessary to have different σ1 and σ2 parameters in (2.1)–(2.2), but data again have

supported the simpler model with σ1 = σ2. Another suggestion, in the present quest to

employ as few parameters as naturally possible, is to let a2 = ka1, b2 = kb1, and σ2 = kσ1,

with a k factor envisaged to be quite close to 1. The b1 = b2 parameterisation is however

easier and more effective.

2.2. A simpler model based on differences. There is a rather simple alternative

way of obtaining an estimate of d, based on the observed differences;

Y2,i − Y1,i = a2 − a1 + b(x2,i − x1,i) + d( 1
2
z2,i − 1

2
z1,i) + η2,i − η1.i

∼ N{a2 − a1 + b(x2,i − x1,i) − 2dwi, 2σ2}.
(2.4)

Here the individual ci capability parameters disappear, and one circumvents the need for

binormal analysis; ordinary linear regression gives d̂simple, say, in addition to â0,simple,

b̂simple, and σ̂simple, where a0 = a2−a1. The d estimate based on all n pairs will be slightly

more precise, however, as discussed in Section 3.3 below. To carry out outlier testing

and a part of the final overall analysis, to be discussed in Section 5, it is necessary also

to estimate κ, on which the (2.4) differences throw no light. In addition it is of course

preferable to have as precise estimates of all parameters involved as possible, and b, in

particular, is more precisely estimated in the full model than in the simpler differences

model. We also note that the binormal (2.2) model, with b1 = b2 = b, is equivalent to

stochastic independence between difference Y2,i−Y1,i and average Ȳi = (Y1,i +Y2,i)/2, and

with
Ȳi ∼ N{ā + bx̄i, κ

2 + σ2/2}, where x̄i = (x1,i + x2,i)/2,

Y2,i − Y1,i ∼ N{a2 − a1 + b(x2,i − x1,i) − 2dwi, 2σ2}.
(2.5)

3. Parameter estimates and their precision

In this section the parameter estimation procedure for models of the type (2.2) is outlined.

We also include analysis of the precision of the parameters, caring particularly about the

d estimators.

3.1. Estimation in the mixed effects model. Suppose in general terms that we

have n independent pairs of data

Y1,i = x′

1,iβ + f1,i = x1,i,1β1 + · · · + x1,i,pβp + f1,i,

Y2,i = x′

2,iβ + f2,i = x2,i,1β1 + · · · + x2,i,pβp + f2,i,
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where β = (β1, . . . , βp)
′ is the vector of regression coefficients, x1,i is a p-covariate vector

for Y1,i, and x2,i is a p-covariate vector for Y2,i. Furthermore, (f1,i, f2,i)
′ is zero mean

binormal with covariance κ2 and variances σ2 + κ2; in the notation above f1,i = ci + e1,i

and f2,i = ci + e2,i. In other words,

(
Y1,i

Y2,i

)
∼ N2{

(
x′

i,1β
x′

i,2β

)
,

(
σ2 + κ2 κ2

κ2 σ2 + κ2

)
=

σ2

1 − ρ

(
1 ρ
ρ 1

)
},

the latter matrix expression being in terms of the intraclass correlation parameter ρ =

κ2/(σ2 + κ2).

Aiming to find the maximum likelihood (ML) estimators, we start with the log-

likelihood for data. It is

log L(β, σ, ρ) = −2n log σ − 1

2
n log

1 + ρ

1 − ρ
− 1

2

1

σ2

Q(β)

1 + ρ
, (3.1)

where

Q(β) =

n∑

i=1

(Yi − x′

iβ)′
(

1 −ρ
−ρ 1

)
(Yi − x′

iβ)

=

n∑

i=1

(Y1,i − x′

1,iβ)2 +

n∑

i=1

(Y2,i − x′

2,iβ)2 − 2ρ

n∑

i=1

(Y1,i − x′

1,iβ)(Y2,i − x′

2,iβ)

= Q1(β) + Q2(β) − 2ρQ3(β).

We are to find the maximisers β̂, σ̂, ρ̂ of (3.1). The one for β must be β̂ = β̂(ρ̂), where

β̂(ρ) is found from minimisation of Q(β), i.e.

β̂(ρ) = {M11 + M22 − ρ(M12 + M21)}−1{S11 + S22 − ρ(S12 + S21)}, (3.2)

in which

Muv =
1

n

n∑

i=1

xu,ix
′

v,i and Suv =
1

n

n∑

i=1

xu,iYv,i, u, v = 1, 2.

And the ML estimators for σ and ρ are found from maximising log L(β̂(ρ), σ, ρ). Taking

partial derivatives w.r.t. σ and ρ gives two equations that must be obeyed:

σ̂2(ρ) =
1

1 + ρ

Q(β̂(ρ))

2n
and σ̂2(ρ) =

1 − ρ

1 + ρ

Q1(β̂(ρ)) + Q2(β̂(ρ)) + 2Q3(β̂(ρ))

2n
. (3.3)

Finding the ML estimator ρ̂ is accomplished either via maximisation of the log-likelihood

profile function

log L(β̂(ρ), σ̂(ρ), ρ) = n
[
− log

{ 1

1 + ρ

Q(β̂(ρ))

2n

}
+

1

2
log

1 − ρ

1 + ρ
− 1

]

= n
[
1
2

log(1 − ρ2) − log{Q(β̂(ρ))/2n} − 1
]
,

(3.4)
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or from solving for the two expressions in (3.3) to be equal. Note also that

ρ =
2Q3(β̂(ρ))

Q1(β̂(ρ)) + Q2(β̂(ρ))
(3.5)

at the parameter point that solves (3.3), i.e. for the ML solution. This fits the fact that

Q1(β), Q2(β), Q3(β) have expected values σ2/(1− ρ), σ2/(1− ρ), and σ2ρ/(1− ρ), at the

true model. Solving (3.5) for ρ is yet another method for carrying out the ML estimation.

We will actually use a sample-size modification for σ̂. Assuming for a moment that

the value of ρ is known, one shows easily that β̂(ρ) of (3.2) is normal, unbiased, and with

covariance matrix n−1σ2(1 + ρ)M−1
ρ , where

Mρ = M11 + M22 − ρ(M12 + M21).

Furthermore arguments can be furnished, using orthogonalisation techniques and proper-

ties of the binormal distribution, to demonstrate that

2n σ̂2(ρ)/(1 + ρ) = Q(β̂(ρ))/(1 + ρ) ∼ 2σ2χ2
2n−p,

and that Q(β̂(ρ)) is statistically independent of β̂(ρ). In particular this invites using the

modified estimator

σ̂2
un =

1

1 + ρ̂

Q(β̂(ρ̂))

2n − p
=

2n

2n − p
σ̂2 ; (3.6)

it is slightly larger than the ML estimate σ̂2, to take estimation variability of the p re-

gression coefficients into account. We will also similarly use κ̂2
un = σ̂2

unρ̂/(1 − ρ̂) as a

sample-size corrected version of the ML estimator for κ2. The argument is not disturbed

by the insertion of ρ̂ for ρ, since we show in a minute that ρ̂ is approximately independent

of β̂ = β̂(ρ̂).

3.2. Precision of estimates. Note that classic regression theory distributional

results do not hold here, for example, β̂ is not quite normally distributed since the random

ρ̂ is inserted. But traditional distributional approximations for ML estimators can be

appealed to and implies that (β̂, σ̂, ρ̂) is approximately jointly normally distributed with

the correct mean vector and covariance matrix J−1/n, where J is minus the mean of the

normalised and twice differentiated log-likelihood, calculated at the true parameter values.

With some efforts one finds

J =




Mρ/{σ2(1 + ρ)} 0 0
0 4/σ2 2/{σ(1 − ρ2)}
0 2/{σ(1− ρ2)} 2/(1 − ρ2)2


 .

This means that

β̂ ≈ Np{β, n−1 σ2(1 + ρ)M−1
ρ }, (3.7)

that (
σ̂
ρ̂

)
≈ N2

{(
σ
ρ

)
,

1

n

(
1
2
σ2 − 1

2
σ(1 − ρ2)

− 1
2
σ(1 − ρ2) (1 − ρ2)2

)}
,
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and that β̂ and (σ̂, ρ̂) become independent for large n. Confidence intervals and tests can

now be furnished in the usual fashion. We comment specifically on this below for the case

of d.

The (3.7) result continues to be a very good approximation even if the exact conditions

of the normal model (2.2) should be violated. This follows from standard large-sample

theory. The distributional results for σ̂ and ρ̂ might have to be adjusted for nonnormality

of (Y1,i, Y2,i); the more generally correct approximate variance of σ̂ can for example be

shown to be n−1σ2( 1
2

+ 1
4
kurt), where kurt is the kurtosis of Y1,i − Y2,i. In any case this

would not have seriously hampered our analysis, which is concerned primarily with d and

the other mean parameters, but it is comforting that in fact no serious departure from

normality could be detected in our data (as soon as the quite few outliers were removed),

as further commented on in Section 4.

3.3. Comparison of two d estimators. The binormal mixed effects model

used is that of (2.2), with mean parameter vector (a1, a2, b, d)′ and with covariate vec-

tors (1, 0, x1,i, wi)
′ and (0, 1, x2,i,−wi)

′ associated with skater i. The (3.7) result is that

(â1, â2, b̂, d̂) has covariance matrix approximately equal to n−1σ2(1 + ρ)M−1
ρ . In this sit-

uation,

M11 =




1 0 ave(x1) ave(w)
0 0 0 0

ave(x1) 0 ave(x2
1) ave(x1w)

ave(w) 0 ave(x1) ave(w2)


 ,

M22 =




0 0 0 0
0 1 ave(x2) ave(−w)
0 ave(x2) ave(x2

2) ave(−x2w)
0 ave(−w) ave(−x2w) ave(w2)


 ,

M12 =




0 1 ave(x2) ave(−w)
0 0 0 0
0 ave(x1) ave(x1x2) ave(−x1w)
0 ave(w) ave(x2w) ave(−w2)


 ,

M21 =




0 0 0 0
1 0 ave(x1) ave(w)

ave(x2) 0 ave(x1x2) ave(x2w)
ave(−w) 0 ave(−x1w) ave(−w2)


 ,

where ave(x1) is the average n−1
∑n

i=1 x1,i, and so on. These can be computed for the

given covariates x1, x2, w, and this is what is used to produce standard errors (estimated

standard deviations) for d̂ in the SWCs; see Section 4 and Table 1 of Section 1.

The statistical analysis takes place conditional on covariates x1, x2, w, but it is also

illuminating to study simpler approximations, based on ‘typical behaviour’ of these, whose

values also can also be viewed as outcomes of random mechanisms. In such a framework

it is clear that w behaves stochastically independent of x1 and x2, and that the symmetric

± 1
2

variable w has mean zero; in fact ave(w) = 0 if n is even and ± 1
2
/n if n is odd. It

follows that ave(x1w) and ave(x2w) will both be close to zero. Using these arguments it
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follows that

Mρ ≈




1 −ρ ave(x1 − ρx2) 0
−ρ 1 ave(x2 − ρx1) 0

ave(x1 − ρx2) ave(x2 − ρx1) ave(x2
1 + x2

2 − 2ρx1x2) 0
0 0 0 1

2
+ 1

2
ρ


 .

In particular this demonstrates that

Var d̂ ≈ n−1σ2(1 + ρ) 2/(1 + ρ) = 2σ2/n. (3.8)

The simpler estimate d̂simple based on differences, as in (2.4), can be analysed similarly.

It emerges by ordinary linear regression of Y2,i − Y1,i against x2,i − x1,i and −2wi. The

covariance matrix for say (â0,simple, b̂simple, d̂simple) constructed in this fashion, where a0 =

a2 − a1, is equal to

2σ2

n




1 ave(x2 − x1) ave(−2w)
ave(x2 − x1) ave((x2 − x1)

2) ave(−2w(x2 − x1))
ave(−2w) ave(−2w(x2 − x1)) ave(4w2)




−1

≈ 2σ2

n




1 ave(x2 − x1) 0
ave(x2 − x1) ave((x2 − x1)

2) 0
0 0 1




−1

.

It follows that d̂simple has approximately the very same precision as the more complicated d̂

that builds more explicitly on the binormal mixed effects model. These are approximations,

however, and the d̂ will have a slight edge in each application, since the differences-based

simpler method builds on less information.

We also note that the b parameter will typically be better estimated in the mixed model

than in the differences model. Calculations as above show that b̂ has (σ2/2n)(1 + ρ)/τ2

while b̂simple has (σ2/τ2)/n as approximate variances, where τ 2 is empirical variance of xs.

Thus the ratio Var b̂simple/Var b̂ is 2/(1 + ρ). In the same vein it can be shown that σ̂un

and the σ̂simple, available by regression on (2.4), have approximately the same precision.

4. Deciding on outliers, and validating the model

As mentioned in the introduction we would not wish to see d overly influenced by unusual

results. Minor slips or accidents occur frequently in this technically demanding sport,

and easily cause losses of tenths of a second; we envisage our d as the average difference

for normal runs without such mishaps. This is one of several reasons favouring a robust

analysis of the model and in particular a statistically robust estimate of d. While various

robust procedures are available, I opt for the conceptually simple method of detecting

outliers first and removing these from the final analysis. This is also quite reasonable in

view of the fact that data convincingly support the parametric model (2.2), as discussed

below.
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Figure 2 (a)–(f). Plots to validate the mixed effects statistical model, using
results from the 1994 Calgary Sprint World Championship. Plots (a) and (b)
give Yi versus xi for each day and show acceptable linearity (as well as Dan
Jansen’s World Record 35.76 in plot (b) and Hiroyasu Shimizu’s 9.70 in plot(a)).
Plots (c) and (d) display Saturday and Sunday residuals against 100 meter passing
times, and support the assumption of constant variability across x values. In (e)
standardised differences diff∗

i are plotted against standardised averages ave∗i , see
(4.4), with non-significant correlation 0.249. Finally (f) gives nonparametrically
estimated densities of the diff∗

i s (fully drawn curve) and of the ave∗i s (dotted
curve), using the traditional kernel method, together with the standard normal
curve.

4.1. Outlier criteria. Let r1,i and r2,i the the lap times for the skater’s last 400

meter. These can be expressed as

r1,i = Y1,i − x1,i = a1 + (b − 1)x1,i + dwi + ci + e1,i,

r2,i = Y2,i − x2,i = a2 + (b − 1)x2,i − dwi + ci + e1,i,
(4.1)

It is natural to discard cases where one of these are too large, in comparison with expected

normal behaviour, and also cases where the absolute difference |r2,i − r1,i| between the
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skater’s two lap times is too large. This statistical safety net will catch skaters who have

had minor or not so minor technical slips in one of his or her two runs.

The first outlier criterion is developed as follows. Based on all data from a two-day

SWC event, excluding only those who fell or were disqualified, estimates are computed of

(a1, a2, b, d) and of (σ, κ). Then we form the outlier test statistics

t1,i = {Y1,i − (â1 + b̂x1,i + 1
2
d̂z1,i)}/(σ̂2

un + κ̂2
un)1/2,

t2,i = {Y2,i − (â2 + b̂x2,i + 1
2
d̂z2,i)}/(σ̂2

un + κ̂2
un)1/2,

(4.2)

both of which are approximately a standard normal if the skater had a ‘normal’ run without

accidents. Slightly more accurate denominators could be constructed here, dividing by an

estimate of the exact standard deviation rather than with the approximate one, but the

difference is unsubstantial for the present purposes. We deem a case ‘above normal bounds’

if t1,1 or t2,i exceed 2.75. Note that we allow cases with unusually low values of t, since

these correspond to extraordinary good performances.

The second outlier criterion emerges by looking at normal behaviour of the difference

between lap times. By (4.1) this leads to constructing

t3,i =
[
r2,i − r1,i − {â2 − â1 + (̂b − 1)(x2,i − x1,i) − 2d̂wi}

]
/
√

2σ̂un

= {(Y2,i − â2 − b̂x2,i − d̂wi) − (Y1,i − â1 − b̂x2,i + d̂wi)}/
√

2σ̂un.
(4.3)

Again these should be approximately distributed as standard normals if the skater’s two

runs were ‘normal’. A case is deemed ‘outside normal bounds’ if |t3,i| ≥ 2.75.

4.2. Model validation. The adequacy of the basic model was checked against

various potential violations, and, in short, no audible objections were raised by the data.

Plots of Yi versus xi for each day, and for each competition, agreed well with the

assumed linearity. Plots of Saturday and Sunday residuals against respectively x1,i and

x2,i revealed no departure from the assumed constant level of variability hypothesis. The

simultaneous aspects of the (2.2) model were checked via the reformulated equivalent

(2.5) model. Scatters were plotted and correlations computed to check for possible de-

pendencies between averages and differences, and again these supported the mean and

variance/covariance structure of the model. See Figure 2 (a)–(e) which illustrate these

features for the case of the 1994 Calgary Championship.

Coming finally to checking the hypothesised bi-Gaußian distribution, this could be

separated into one-dimensional normality assessment of averages and differences, as with

(2.5). We have pointed out already, in Section 3.2, that deviations from normality is of no

great concern as far as the d analysis is concerned, and that such deviations, specifically in

the form of kurtosis values different from the zero predicted by normality, at most could

cause mild concern for precision of the σ and κ estimates. However, the normal distribution

fits nicely. For purposes of plotting and for comparison over different Championships it is

convenient to standardise these, as

ave∗i = {Ȳi − (̂̄a + b̂x̄i)}/(κ̂2
un + σ̂2

un/2)1/2,

diff∗

i = {Y2,i − Y1,i − (â2 − â1 + b̂(x2,i − x1,i) − 2d̂wi)}/
√

2σ̂un.
(4.4)
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These have zero mean and variance nearly equal to 1, and under the model hypothesis these

should behave independently of each other and each be approximately standard normal.

Figure 2(e) displays the 28 pairs of these variables for the 1994 SWC in Calgary (of the

33 participants, three had falls, and two were declared outliers, by the criteria above; see

Appendix II), and Figure 2(f) shows smooth estimates of their densities, comparing them

also with the standard normal. The fit is quite acceptable. The same was observed on the

basis of quantile-quantile plots against the standard normal. The skewnesses were 0.324

and 0.269, and the kurtosis values were −0.149 and −0.703, all values well within normal

range. (Approximate 90% ranges for the skewness and kurtosis, with 28 normal data

points, are approximately ±0.76 and ±1.52.) The observed correlation is 0.249 and is also

within the 90% expected range (which is approximately ±0.31). Similar plots were made

and coefficients computed for the other Championships as well, and again no challenges to

the model assumptions were made.

4.3. How many SWCs should I analyse? The present investigation is a statistical

detective search for a quite tiny parameter, in a way looking for the odd meter in 500 with

a statistician’s magnifying glass. We cannot expect to be able to declare a positive d with

data from only one or two Championships. There is accordingly a question of gathering

enough data to create a reasonable statistical power for the envisioned size of d, say about

0.05 seconds. From (3.8) it emerges that the optimally combined estimator d̂grand, taken

over say K SWCs, would have a variance of the form {∑K
j=1 nj/(2σ2

j )}−1, with nj skaters

in the jth SWC. As an approximation this is the same as 2σ2/N , where N =
∑K

j=1 nj,

and analysis from the first couple of SWCs data sets I used suggested that σ ≈ 0.25. As a

rough guide, therefore, about 300 skaters’ paired runs were necessary to gather, in order

to form a grand estimate with standard error of size 0.02 seconds (95% confidence interval

width around 0.08 seconds). Since around 30 skaters compete in each SWC I needed to go

through about ten complete SWCs to achieve the necessary precision. A standard error of

0.02 seconds would give detection probability around 80% for a true d = 0.05, and around

90% for d = 0.06.

5. Analysing the Sprint World Championships 1984–1994

This section summarises analysis carried out for each of the eleven Championships 1984–

1994, using methods developed in Section 3. Only skaters who passed all three outlier tests

above were included.

First we give a table of all required parameter estimates, for each of the eleven sit-

uations. The d estimate column is identical to the list also given in Table 1 of Section

1, where also standard errors were given. Interpretation of the parameters is discussed

in Sections 2 and 3. Again we note that the few cases where the d estimate actually is

negative are also characterised by higher than normal values for σ, in particular, which

means higher variability around each skater’s normal level. On the occasions in question a

tentative explanation lies with the partly severe and variable weather conditions that met

the participants (Sainte Foy 1987, West Allis 1988, Oslo 1992). The cases with more than

a tiny difference between a1 and a2, like for Sainte Foy 1987 and Tromsø 1990, are the
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events where Saturday and Sunday conditions differed markedly.

a1 a2 b d ρ σ κ
1994: 16.984 16.938 2.007 0.010 0.838 0.156 0.355
1993: 18.861 18.998 1.892 0.032 0.799 0.158 0.315
1992: 13.541 13.369 2.494 −0.019 0.538 0.308 0.332
1991: 13.184 13.060 2.462 0.023 0.800 0.155 0.309
1990: 15.137 14.552 2.371 0.096 0.338 0.327 0.234
1989: 3.595 3.475 3.385 0.128 0.720 0.177 0.284
1988: 22.810 22.469 1.670 −0.147 0.701 0.335 0.513
1987: 18.461 17.823 2.056 −0.151 0.553 0.326 0.362
1986: 16.950 17.009 2.101 0.035 0.519 0.256 0.266
1985: 13.093 12.803 2.537 0.090 0.517 0.219 0.227
1984: 17.507 17.136 2.088 0.131 0.847 0.134 0.314

Table 3. Estimates of the four mean value parameters a1, a2, b, d and of the
three variance-covariance parameters ρ, σ, κ, for each of the eleven Sprint World
Championships for men, 1984–1994.

The primary method for testing d = 0 is simply to consider the natural overall estimate

and compare its value to its standard error. If d̂j is the estimate in year j, with standard

error sej , then

d̂ =
1994∑

j=1984

d̂j/se2
j

/ 1994∑

j=1984

1/se2
j (5.1)

is the optimal combination, with precision given by Var d̂ = (
∑1994

j=1984 1/se2
j )

−1. (This

variance calculation is exactly valid in the case of fully known values for the sejs; that these

are estimated rather than fully known does however only cause a very modest second order

level increase in the variance.) These are the formulae that produced the grand estimate

0.048 with standard error 0.016 in Table 1 of Section 1. Again, this is significant with

p-value 0.001.

It is also illuminating to present evidence against the d = 0 hypothesis in terms of

direct as well as suitably corrected and standardised differences in lap times. The lap time

difference for skater i is r2,i − r1,i = a2 − a1 + (b − 1)(x2,i − x1,i) + e2,i − e1,i, if d = 0, so

that the variable

Di = r2,i − r1,i − {â2 − â1 + (̂b − 1)(x2,i − x1,i)}
= (Y2,i − â2 − b̂x2,i) − (Y1,i − â1 − b̂x1,i)

(5.2)

represents adjusted lap time difference for each skater, where ‘adjusted’ means relative

to varying ice and weather conditions on the two days and information contained in the

100 meter passing times, but not adjusted for inner-outer lane information. The Dis are

directly interpretable on the original time scale in seconds. Figure 3 gives density estimates

for Dis observed for two groups of skaters, for each of the SWCs 1984–1994. The first group

is the one with (z1,i, z2,i) = (1,−1), or wi = 1
2
, and has the presumed preferable last outer

lane on the second day; the complimentary group has (z1,i, z2,i) = (−1, 1), or wi = − 1
2
,

with last outer lane on the first day. Accordingly, if there is unfairness in the expected

direction (d positive), then the Dis for the wi = 1
2

group can be expected to lean slightly
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to the left (mean value around −d), while the Dis for the wi = − 1
2

group would tend

to lean slightly to the right (mean value around d). In Figure 3 skaters who fell or were

disqualified were eliminated, as were those failing one or more of the three outlier tests

described in Section 4. When presenting these pairs of densities I also went to the trouble

of calculating the Dis with recomputed estimates (â1, â2, b̂) under the d = 0 hypothesis.Figure 3
with its
eleven
parts is
found on
pages 24

Figure 3. Nonparametric kernel-method density estimates for the modified dif-
ference variables Di, for the wi = 1/2 group (fully drawn) and for the wi = −1/2
group (dotted line), for each of the eleven SWCs 1984–1994. The advantage of
having last outer lane is arguably prominent for the 1991, 1990, 1989, 1986, 1985,
1984 occasions, undecided for the 1994, 1993, 1992 events, while the advantage
seems to have been with the last inner lane in 1988 and 1987. The number of
skaters contributing to the eleven sub-figures are respectively 26, 29, 30, 33, 28,
29, 28, 32, 26, 30, 27, for the years 1984–1994.

These figures give good visual impressions of the tentative differences between the

inner and outer lane situations, for each particular SWC 1984–1994. They also reveal in-

formation about variability level, corresponding to the σ̂un values given in Table 3 above;

Tromsø 1990, West Allis 1988 and Sainte Foy 1987 were quite variable occasions (again,

explainable by weather and gliding conditions), whereas Trondheim 1994, Heerenveen in-

door 1989 and Inzell 1991, for example, were ‘cleaner’ occasions with less variability around

each skater’s normal capacity level. Figure 4 presents essentially the same information in

another way, by ordinary data dot plots.
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Figure 4. Plots of the modified difference variables Di, for the wi = 1/2 group
(to the left) and for the wi = −1/2 group (to the right), for each of the eleven
SWCs 1984–1994. See also the legend to Figure 3.

A quite informative overall picture can also be formed by comparing the all in all 159

skaters who had wi = 1
2

with the 159 skaters who had wi = − 1
2
. The comparison is most
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meaningful if the Dis are all scaled with the appropriate estimated standard deviation,

which varies from year to year. Figure 5 therefore presents densities for the two groups, of

the adjusted and standardised variables

D∗

i = Di/
√

2σ̂un =
[
r2,i − r1,i − {â2 − â1 + (̂b − 1)(x2,i − x1,i)}

]
/
√

2σ̂un

= {(Y2,i − â2 − b̂x2,i) − (Y1,i − â1 − b̂x1,i)}/
√

2σ̂un,
(5.3)

with the appropriate year-specific σ̂un. Again the D∗

i s that were used employed re-

estimated versions of â1, â2, b̂, σ̂un, all arrived at under the d = 0 hypothesis. The

D∗

i s with wi = 1
2

should lean somewhat to the left (mean value around −d/
√

2σ) while

those with wi = − 1
2

should lean the other way (mean value around d/
√

2σ), again, if d

indeed is positive. The figure seems to support this, in view of the large sample sizes for

the two group. If my reader agrees that the wi = 1
2

curve gives slightly but markedly more

probability mass to the left hand side than does the wi = − 1
2

curve, then he or she might

endorse the change in rule towards asking the skaters to sprint twice.

normalised laptime-differences

tw
o d

en
sit

ies

-2 0 2

0.0
0.1

0.2
0.3

0.4

D^*: 159 with last inner, 159 with last outer

Figure 5. Density estimates for the two groups of adjusted and standardised
difference variables D∗

i of (5.3). The fully drawn curve is that of the 159 skaters
who had last outer lane at the Sunday event while the dotted curve is that of
the complimentary 159 skaters who had last outer lane on Saturday. The former
gives more probability mass to the left, indicating that the last outer lane is
advantageous.

6. Women

Women are different from men, aerodynamically speaking. As hinted at in the introduc-

tion section the best women sprinters do not seem to be hampered as much as many

male sprinters with high speed in the last inner lane, and also offer spectators far fewer
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spectacular high speed falls (there were only three 500 meter-falls in eleven SWCs among

the women, including Christa Rothenburger’s in 1985, where she still managed to win the

Championship, but 16 in the same period among the men). I nevertheless went ahead to

collect and analyse the same amount of data on the women’s runs, adhering to the Equal

Statistics for Women commandment, to estimate also their seemingly less significant d

parameter. The results were as follows, as far as the d estimation is concerned. Note that

the SWCs are always held jointly for men and women, on the same days, so the same

weather and ice quality conditions reign over both.
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Figure 6. Estimates of the d parameter, for the women’s and the men’s events,
for eleven SWCs 1984–1994. The correlation is 0.792, and indicates that the real
d parameter changes somewhat from event to event.

d̂ st. error

1994 Calgary: −0.027 0.039
1993 Ikaho: −0.072 0.067
1992 Oslo: −0.189 0.090
1991 Inzell: −0.022 0.079
1990 Tromsø: 0.080 0.063
1989 Heerenveen: 0.010 0.046
1988 West Allis: −0.159 0.086
1987 Sainte Foy: −0.157 0.159
1986 Karuizawa: 0.106 0.095
1985 Heerenveen: 0.021 0.079
1984 Trondheim: 0.071 0.081

grand average: −0.015 0.020

Table 4. Estimates of the difference parameter d for eleven Sprint World Cham-
pionships for women, along with standard errors (estimated standard deviation)
for these.
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The first thing to note is that it is not possible to reject the null hypothesis d = 0 based

on these data, and any reasonable confidence interval will cover zero. A second prominent

feature is that the d estimates for women are highly correlated with those for the men (the

correlation coefficient is 0.792); see Figure 6. This supports the notion that each SWC

event has its own characteristics, depending on wind, weather and gliding conditions; in

addition two skating rinks might differ somewhat with respect to the actual radii used for

inner and outer lanes. This also lends support to the appropriateness of the new ISU/IOC

rules, that also the women skaters are to run the Olympic 500 meter twice from Nagano

1998 onwards, as well as in the annual single distance World Championships that are

introduced in 1996.

7. Supplementing remarks

Remark A. The inner-outer question can also be asked for the 1000 meter competi-

tion. In this event skaters the first 200 meter, in particular, are quite different stretches

for the two skaters. A potential difference is not likely to be statistically visible, however;

the distance is long enough to diminish any tiny discrepancies. My student Siri Størmer is

considering SWC results from several 1000 meters, looking for inner-outer significances as

well as other aspects, and indeed preliminary investigations have not found any significant

inner-outer differences.

Remark B. It is natural to think that the d parameter is not quite one and only one

constant, but that it changes slightly from event to event, depending on weather and the

rink itself. The comments regarding the similarity between the men’s and the women’s d

estimates above supports this notion, cf. Figure 6. A simple model for this is to postulate

that dj ∼ N{d0, ω
2
0}, where d0 is some presumed grand mean over many events and ω0

the level of variation. Our d̂j is approximately a N{dj, se
2
j}, conditionally on dj . One may

now show that

1994∑

j=1984

(d̂j − d̂)2/se2
j has mean value 10 + ω2

0(A2 − A4/A2),

where d̂ is as in (5.1) and Aq =
∑1994

j=1984 1/seq
j for q = 2, 4. This gives us the opportunity to

estimate the variability between events parameter ω0; I find 0.057 for the men’s events and

0.042 for the women’s. In other words, according to this model, the djs can be expected

to wander from about −0.05 up to about 0.14, in 90% of such competitions for the men.

The corresponding figures for the women are −0.08 to 0.05.

That the underlying parameters of the model, from (a1, a2, b, d) to (σ, ρ, κ), vary

from event to event in a suitably regular fashion can be modelled as well, as with the

dj parameters. This may lead us to empirical Bayes modelling and estimation. Such a

framework yields refined estimators of the individual parameters that in an overall sense

would be more precise than for example the d̂js of Section 1’s Table 1. Our main task

has been to estimate the grand average of these, however, and it seems more natural to

let the parameters of each competition speak for themselves, without weighing in similar

information from other years.

Nils Lid Hjort 19 November 1994



Remark C. One may ask whether there is a difference between the very best skaters

in the world and the not quite as excellent ones, regarding their ability to tackle the last

inner lane. The answer would depend on the selected party with which one wishes to

compare the very best. The level of the skaters being allowed to compete at the SWCs is

now uniformly very high, however, and significant differences would have been surprising.

To investigate this matter, I divided each of the 1984–1994 sets into two halves, the best

part (decided on by the average 500 meter result) and the remaining ones. For each half

one can fit the (2.2) model (with b1 = b2), and in particular compare the d̂best estimate

for the very best skaters in the world with the corresponding d̂rest valid for the not quite

as spectacular skaters. Overall there seems to be a certain tendency towards dbest < drest,

that is, the very best skaters are better at handling also the last inner lane problems. This

discrepancy is not significant, however; there are instances where the opposite happens,

and the best combined estimate of dbest − drest is −0.044 with standard error 0.029.
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Appendix I

The left hand list given here gives the real results from the Olympic 500 meter sprint event.
The supplementary faked list is meant to show what presumably would have happened
if the inner-outer lane draw had ended in the opposite way. For example, 1988 silver
medalist Jan Ykema would have ended fourth while fourth ranked Sergei Fokitshev would
have grabbed the bronze, and so on.

Olympic Games, Lillehammer 1994
Real list: Speculative list:

1. Aleksandr Golubyev i 36.33 1. Aleksandr Golubyev 36.38
2. Sergei Klevtshena i 36.39 2. Sergei Klevtshena 36.44
3. Manabu Horii o 36.53 3. Manabu Horii 36.48
4. Hongbo Liu i 36.54 4. Hiroyasu Shimizu 36.55
5. Hiroyasu Shimizu o 36.60 5. Hongbo Liu 36.59
6. Junichi Inoue i 36.63 6. Grunde Njøs 36.61
7. Grunde Njøs o 36.66 7. Yasunori Miyabe 36.67
8. Dan Jansen i 36.68 8. Junichi Inoue 36.68
9. Yasunori Miyabe o 36.72 Igor Zhelezovsky 36.68

10. Igor Zhelezovsky o 36.73 10. Dan Jansen 36.73
11. Sylvain Bouchard o 37.01 11. Sylvain Bouchard 36.96
12. Patrick Kelly i 37.07 12. Yoon-Man Kim 37.05
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Vadim Shakshakbayev i 37.07 13. Patrick Kelly 37.12
14. Yoon-Man Kim o 37.10 Vadim Shakshakbayev 37.12
15. Mikhail Vostroknutov i 37.15 15. Mikhail Vostroknutov 37.20
16. Andrei Bakhvalov i 37.24 16. Sean Ireland 37.25
17. Sean Ireland o 37.30 17. Andrei Bakhvalov 37.29
18. Peter Adeberg o 37.35 18. Peter Adeberg 37.30
19. David Cruikshank i 37.37 19. Nathaniel Mills 37.36
20. Nathaniel Mills o 37.41 20. Gerard van Velde 37.40
21. Gerard van Velde o 37.45 21. David Cruikshank 37.42
22. Roland Brunner i 37.47 22. Arie Loef 37.47
23. Oleg Kostromitin i 37.50 23. Hans Markström 37.48
24. Arie Loef o 37.52 24. Roland Brunner 37.52
25. Hans Markström o 37.53 25. Oleg Kostromitin 37.55
26. Michael Ireland i 37.67 26. Michael Ireland 37.72
27. David Besteman i 37.68 27. David Besteman 37.73
28. Lars Funke o 37.80 28. Lars Funke 37.75
29. Alessandro de Taddei i 37.87 29. Sung-Yeol Jaegal 37.85
30. Sung-Yeol Jaegal o 37.90 30. Nico van der Vlies 37.89
31. Nico van der Vlies o 37.94 31. Alessandro de Taddei 37.92
32. Davide Carta o 37.98 32. Davide Carta 37.93
33. Vladimir Klepinin o 38.09 33. Vladimir Klepinin 38.02
34. Magnus Enfeldt i 38.10 34. Jae-Shik Lee 38.05

Jae-Shik Lee o 38.10 35. Kyou-Hyuk Lee 38.08
36. Kyou-Hyuk Lee o 38.13 36. Magnus Enfeldt 38.15
37. Arjan Schreuder i 38.33 37. Arjan Schreuder 38.38
38. Zsolt Balo i 38.56 38. Zsolt Balo 38.61
39. Michael Spielmann i 38.58 39. Michael Spielmann 38.63
– Roger Strøm i dnf Roger Strøm —

Olympic Games, Albertville 1992
Real list: Speculative list:

1. Uwe-Jens Mey o 37.14 1. Uwe-Jens Mey 37.09
2. Toshiyuki Kuroiwa i 37.18 2. Toshiyuki Kuroiwa 37.23
3. Junichi Inoue i 37.26 3. Junichi Inoue 37.31
4. Dan Jansen o 37.46 4. Dan Jansen 37.41
5. Yasunori Miyabe i 37.49 5. Gerard van Velde 37.44

Gerard van Velde o 37.49 6. Aleksandr Golubyev 37.46
7. Aleksandr Golubyev o 37.51 7. Chen Song 37.53
8. Igor Zhelezovsky i 37.57 8. Yasunori Miyabe 37.54
9. Chen Song o 37.58 9. Yoon-Man Kim 37.55

10. Yoon-Man Kim o 37.60 10. Igor Zhelezovsky 37.62
11. Hongbo Liu i 37.66 11. Sung-Yul Yegal 37.66
12. Sung-Yul Yegal o 37.71 12. Hongbo Liu 37.71
13. Nick Thometz i 37.83 13. Vadim Shakshakbayev 37.81
14. Robert Dubreuil i 37.86 14. Guy Thibault 37.84

Vadim Shakshakbayev o 37.86 15. Nick Thometz 37.88
16. Guy Thibault o 37.89 16. Robert Dubreuil 37.91
17. Kevin Scott i 38.02 17. Kevin Scott 38.07
18. Yukihiro Miyabe i 38.12 18. Yukihiro Miyabe 38.17
19. Marty Pierce i 38.15 19. Marty Pierce 38.20
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20. Björn Forslund i 38.24 20. Peter Adeberg 38.28
21. Sergei Klevtshena i 38.26 21. Björn Forslund 38.29
22. David Cruikshank i 38.28 22. Sergei Klevtshena 38.31
23. Peter Adeberg o 38.33 23. Yong-Cho Li 38.33
24. Yong-Cho Li o 38.38 David Cruikshank 38.33
25. Olaf Zinke o 38.40 25. Olaf Zinke 38.35
26. Harri Ilkka i 38.48 26. Rintje Ritsma 38.46
27. Jun Dai i 38.51 27. Harri Ilkka 38.53

Rintje Ritsma o 38.51 28. Arie Loef 38.56
29. Arie Loef o 38.61 Jun Dai 38.56
30. Sean Ireland i 38.70 30. Pawel Abratkiewicz 38.69
31. Pawel Abratkiewicz o 38.74 In-Hoon Lee 38.69

In-Hoon Lee o 38.74 32. Sean Ireland 38.75
33. Hans Markström o 38.89 33. Hans Markström 38.84
34. Bo König i 39.06 34. Bo König 39.11
35. In-Hol Choi o 39.59 35. In-Hol Choi 39.54
36. Zsolt Ballo i 39.70 36. Zsolt Ballo 39.75
37. Csaba Madarasz i 40.41 37. Csaba Madarasz 40.46
38. Joakim Karlberg o 40.71 38. Joakim Karlberg 40.66
39. Jiri Kyncl i 40.92 39. Jiri Kyncl 40.97
40. Roland Brunner o 42.18 40. Roland Brunner 42.13
41. Jiri Musil o 42.20 41. Jiri Musil 42.15
42. Bajro Cenanovic i 43.09 42. Bajro Cenanovic 43.14
43. Slavenko Likic o 43.81 43. Slavenko Likic 43.76

Olympic Games, Calgary 1988
Real list: Speculative list:

1. Uwe-Jens Mey i 36.45 1. Uwe-Jens Mey 36.50
2. Jan Ykema i 36.76 2. Akira Kuroiwa 36.72
3. Akira Kuroiwa o 36.77 3. Sergei Fokitchev 36.77
4. Sergei Fokitchev o 36.82 4. Jan Ykema 36.81
5. Ki-Tae Bae o 36.90 5. Ki-Tae Bae 36.85
6. Igor Zhelezovsky o 36.94 6. Igor Zhelezovsky 36.89
7. Guy Thibault o 36.96 7. Guy Thibault 36.91
8. Nick Thometz i 37.16 8. Nick Thometz 37.21
9. Yasumitsu Kanehama i 37.25 9. Yasushi Kuroiwa 37.29

10. Frode Rønning i 37.31 10. Vitali Makovetski 37.30
11. Yasushi Kuroiwa o 37.34 Yasumitsu Kanehama 37.30
12. Vitali Makovetski o 37.35 12. Kimihiro Hamaya 37.33
13. Kimihiro Hamaya o 37.38 13. Frode Rønning 37.36
14. Gaetan Boucher i 37.47 14. Menno Boelsma 37.47
15. Erik Henriksen i 37.50 15. Gaetan Boucher 37.52
16. Menno Boelsma o 37.52 16. Erik Henriksen 37.55
17. Daniel Turcotte i 37.60 17. Bjørn Hagen 37.64
18. Göran Johansson i 37.69 18. Daniel Turcotte 37.65

Bjørn Hagen o 37.69 19. Marty Pierce 37.71
20. Hanspeter Oberhuber i 37.73 20. Michael Richmond 37.72
21. André Hoffmann i 37.75 21. Göran Johansson 37.74
22. Marty Pierce o 37.76 22. Hein Vergeer 37.75
23. Michael Richmond o 37.77 23. Jerzy Dominik 37.78
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24. Hein Vergeer o 37.80 Hanspeter Oberhuber 37.78
25. Jerzy Dominik o 37.83 25. André Hoffmann 37.80
26. Michael Hadschieff i 37.90 26. Michael Hadschieff 37.95
27. Uwe Streb i 38.03 27. Uwe Streb 38.08
28. Peter Adeberg i 38.11 28. Peter Adeberg 38.16
29. Robert Tremblay i 38.34 29. Robert Tremblay 38.39
30. Hans Magnusson o 38.60 30. Hans Magnusson 38.55
31. Claude Nicoleau i 38.63 31. Claes Bengtsson 38.61
32. Claes Bengtsson o 38.66 32. Claude Nicoleau 38.68
33. Hans van Helden i 39.05 33. Hans van Helden 39.10
34. Christian Eminger o 39.70 34. Christian Eminger 39.65
35. Behudin Merdovic o fell – Behudin Merdovic —
36. Nikolai Gulyayev i fell – Nikolai Gulyayev —
– Dan Jansen i dnf – Dan Jansen —
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D-graphs, SWC Tromsoe 1990
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D-graphs, SWC West Allis 1988

corrected laptime-differences

tw
o d

en
sit

ies

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0
0.2

0.4
0.6

D-graphs, SWC Sainte Foy 1987

corrected laptime-differences

tw
o d

en
sit

ies

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0
0.2

0.4
0.6

0.8
1.0

1.2

D-graphs, SWC Karuizawa 1986

corrected laptime-differences

tw
o d

en
sit

ies

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0
0.2

0.4
0.6

0.8
1.0

1.2

D-graphs, SWC Heerenveen 1985

corrected laptime-differences

tw
o d

en
sit

ies

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0
0.5

1.0
1.5

2.0
2.5

D-graphs, SWC Trondheim 1984

Figure 3. Nonparametric kernel-method density estimates for the modified difference
variables Di, for the wi = 1/2 group (fully drawn) and for the wi = −1/2 group (dotted
line), for each of the eleven SWCs 1984–1994. The advantage of having last outer lane is
arguably prominent for the 1991, 1990, 1989, 1986, 1985, 1984 occasions, undecided for
the 1994, 1993, 1992 events, while the advantage seems to have been with the last inner
lane in 1988 and 1987. The number of skaters contributing to the eleven sub-figures are
respectively 26, 29, 30, 33, 28, 29, 28, 32, 26, 30, 27, for the years 1984–1994.
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